Package index
-
emax_nls() - Emax model with arbitrary covariates (does not support interactions)
-
emax_forward()emax_backward() - Stepwise covariate modelling for Emax regression
-
emax_add_term()emax_remove_term() - Add or remove a covariate term from an Emax regression
-
print(<emaxnls>) - Print an Emax regression model object
-
coef(<emaxnls>) - Coefficents for an Emax regression
-
vcov(<emaxnls>) - Variance-covariance matrix for an Emax regression
-
confint(<emaxnls>) - Confidence intervals for Emax regression model parameters
-
residuals(<emaxnls>) - Residuals for an Emax regression
-
logLik(<emaxnls>) - Log-likelihood for an Emax regression model
-
AIC(<emaxnls>)BIC(<emaxnls>) - Akaike information criterion / Bayesian information criterion
-
anova(<emaxnls>) - Analysis of variance for Emax regression models
-
simulate(<emaxnls>) - Simulate responses from Emax regression model
-
predict(<emaxnls>) - Predicting from Emax regression models
-
deviance(<emaxnls>) - Model deviance for an Emax regression
-
df.residual(<emaxnls>) - Residual degrees of freedom for an Emax regression model
-
fitted(<emaxnls>) - Fitted values for an Emax regression
-
nobs(<emaxnls>) - Number of observations for an Emax regression model
-
sigma(<emaxnls>) - Residual standard deviation for Emax regression models
-
emax_df - Sample simulated data for Emax exposure-response models with covariates.